Crystal structure of octaprenyl pyrophosphate synthase from hyperthermophilic Thermotoga maritima and mechanism of product chain length determination.
نویسندگان
چکیده
Octaprenyl pyrophosphate synthase (OPPs) catalyzes consecutive condensation reactions of farnesyl pyrophosphate (FPP) with isopentenyl pyrophosphate (IPP) to generate C40 octaprenyl pyrophosphate (OPP), which constitutes the side chain of bacterial ubiquinone or menaquinone. In this study, the first structure of long chain C40-OPPs from Thermotoga maritima has been determined to 2.28-A resolution. OPPs is composed entirely of alpha-helices joined by connecting loops and is arranged with nine core helices around a large central cavity. An elongated hydrophobic tunnel between D and F alpha-helices contains two DDXXD motifs on the top for substrate binding and is occupied at the bottom with two large residues Phe-52 and Phe-132. The products of the mutant F132A OPPs are predominantly C50, longer than the C40 synthesized by the wild-type and F52A mutant OPPs, suggesting that Phe-132 is the key residue for determining the product chain length. Ala-76 and Ser-77 located close to the FPP binding site and Val-73 positioned further down the tunnel were individually mutated to larger amino acids. A76Y and S77F mainly produce C20 indicating that the mutated large residues in the vicinity of the FPP site limit the substrate chain elongation. Ala-76 is the fifth amino acid upstream from the first DDXXD motif on helix D of OPPs, and its corresponding amino acid in FPPs is Tyr. In contrast, V73Y mutation led to additional accumulation of C30 intermediate. The new structure of the trans-type OPPs, together with the recently determined cis-type UPPs, significantly extends our understanding on the biosynthesis of long chain polyprenyl molecules.
منابع مشابه
Reaction kinetic pathway of the recombinant octaprenyl pyrophosphate synthase from Thermotoga maritima: how is it different from that of the mesophilic enzyme.
Octaprenyl pyrophosphate synthase (OPPs) catalyzes the chain elongation of farnesyl pyrophosphate (FPP) via consecutive condensation reactions with five molecules of isopentenyl pyrophosphate (IPP) to generate all-trans C40-octaprenyl pyrophosphate. The polymer forms the side chain of ubiquinone that is involved in electron transport system to produce ATP. Our previous study has demonstrated th...
متن کاملCharacterization of acetohydroxyacid synthase from the hyperthermophilic bacterium Thermotoga maritima
Acetohydroxyacid synthase (AHAS) is the key enzyme in branched chain amino acid biosynthesis pathway. The enzyme activity and properties of a highly thermostable AHAS from the hyperthermophilic bacterium Thermotoga maritima is being reported. The catalytic and regulatory subunits of AHAS from T. maritima were over-expressed in Escherichia coli. The recombinant subunits were purified using a sim...
متن کاملOptimization of expression and properties of the recombinant acetohydroxyacid synthase of Thermotoga maritima
The data provide additional support of the characterization of the biophysical and biochemical properties of the enzyme acetohydroxyacid synthase from the hyperthermophilic bacterium Thermotoga maritima (Eram et al., 2015) [1]. The genes encoding the enzyme subunits have been cloned and expressed in the mesophilic host Escherichia coli. Detailed data include information about the optimization o...
متن کاملHomodimeric hexaprenyl pyrophosphate synthase from the thermoacidophilic crenarchaeon Sulfolobus solfataricus displays asymmetric subunit structures.
Hexaprenyl pyrophosphate synthase (HexPPs) from Sulfolobus solfataricus catalyzes the synthesis of trans-C(30)-hexaprenyl pyrophosphate (HexPP) by reacting two isopentenyl pyrophosphate molecules with one geranylgeranyl pyrophosphate. The crystal structure of the homodimeric C(30)-HexPPs resembles those of other trans-prenyltransferases, including farnesyl pyrophosphate synthase (FPPs) and octa...
متن کاملStructure of SAICAR synthase from Thermotoga maritima at 2.2 Å reveals an unusual covalent dimer
As a part of a structural genomics program, the 2.2 angstroms resolution crystal structure of the PurC gene product from Thermotoga maritima has been solved. This 26.2 kDa protein belongs to the phophoribosylaminoimidazole-succinocarboxamide or SAICAR synthase family of enzymes, the members of which are involved in de novo purine biosynthesis. SAICAR synthase can be divided into three subdomain...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 279 6 شماره
صفحات -
تاریخ انتشار 2004